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ABSTRACT

This paper is concerned with the properties of a
class of nonlinear coupled R, L, C networks., Sufficient
conditions are given which insure a unique response de-
fined by a set of differential equations in the normal form.
Next we study the stability of these networks and relate
the property of asymptotic -stability with the property of

"'weak' observability at the resistor terminals.
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I. Introduction and Notation

This paper is concerned with the properties of a class of coﬁpled'
nonlinear R, L, C networks., We first impose conditions on the network
topology and on the network elements which insure a unique response
defined by a set of differential equations in the normal form. The
nature of the conditions and of the results is similar to fhat given by
Desoer and Katzevnelson1 and by Holzmann and Liu. 2 A novel part of the
proof is a "constructive' method of solving a class of nonlinear alge-
braic equations., Next we study the stability of this class of networks
_and relate the question of asymptotic stability to the notion of obser.-
vability. 3 We qhow that for "i)assive" networks with linear inductors and
linear capacitors, the notion of asymptotic stability coincides with th;t
of observability at the resistor terminals. For nonlinear passive net-
works this equivalence is obtained if we suitably weaken the definition

of observability,

As far as possible, the notation used here is that of Kuh and .
" Rohrer. 4 Thus let n be a nonseparable connected network, and let
T ) _

.1 be a normal tree of 72'. We assume that each tree branch is in
parallel with a current source and each link contains a voltage source,
The sources are assumed independent. We denote the link element
voltages (currents) l?y vR(1R), V,S(IS)’ vL(J.L); the voltage sources -

in the links - by eps gy €y the tree branch element voltages (currents)

by vG(iG), vc(ic), vl"(iI‘) and t'he current sources - across the tree

branches - by jG" jC and jI"' Then the Kirchhoff voltage law is‘given

N

by (see 4)
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Vs " *sc V¢ = €
vR * Frc Ve * Frg Vg = °Rr oo
Vi, + FLC Ve t FLG v t FL]." vp = e,

and the Kirchhoff current law is given by
ic - Fg is - Fg‘cin -Ficin = g
ig 'FIT{GiR‘FEGiL =g (2
ip -Frpip = ip |

II. Normal Form

The following conditions are imposed throughout. Let p stand

~ _
for R, LL or C. Then there is a normal tree 1 of nsuch that

Cl.  p-elements in the links are coupled among themselves. Dually,
the p-elements in the tree branches are coupled among

themselves,

Cc2. The link elements are either voltage-controlled or flux-controlled,

whereas the elements in the tree branches are either current-

controlled or charge-~controlled.



More explicitly, Cl and C2 become,

A A ~
ig = iglvg) i, =i (é;) and qg = §gvg)
(7
A A d. )
VG = VG(IG) ¢I‘ = ¢1..(11.,) and v = vc(qc) .
Equations (1‘) = (3) can be conveniently rewritten as
Ay 2 ex 8 -
VR * FrG VGlG! = ®R*= °r ~ Frc Ve
(R)
T A s _ ok A, T.
" FrgiriVR) *ig = ig =g * Fgln:
A A
¢p * Frpeplip) = ¢
\\\(L) :

. T A . A .
- Frpiple) +ip = ipy

A
vg t Fgc Velag) = eg
(C)

T A A
- FSC qS(VS) + @z = 9.

We also have the differential equation



(D)

We remark that q is the vector of the fundamental cutset charges and
¢ is the vector of the fundamental loop fluxes. We also notice that the

equations R, L, and C are of the form:

x + Af(y) = u
(*)
-ATg(X) ty=sv

. - _m m ' : :
where x,” uce Rn; y, ve R ; f:R *Rn;g:Rn—-Rm and A is a fixed
n x m matrix, We now state some conditions on f and g such that

{*) has a unique solution in x and y for each value of u and v.

Theorem 1.1 If the functions f and g satisfy conditions Hl and H2

or they satisfy conditions Hl and H3, then (*) has a unique solution.

Hl, f and g are differentiable and the Jacobian matrices
F(y) 2 -g—f; (y) and G(x) a %i— (x) are positive semi-definiteTT
for all x and vy.

H2, Either I¥({y) is a symmetric positive definite matrix for all y or

G(x) is a symmetric positive definite matrix for all x.

8= !



H3. Either F(y) is diagonal for all y or G(x) is diagonal for all x.

Proof: We wish to determine the solutions (if any) to the set of

equations A :

x + Af{ly) =u’
(*)
-AT'g(x) +y= Q.

Define a(x, y) = -z]l{llx + A f(y) - uu2 + 0 -AT gix) +y - v;;z} « Then x
and y solve (*) if and only if a(x, y) = 0. Consider the differential

equation

T opm s - lxraky) - w - (AT 61T (-aT g +y-v)

=2 - aryIT Aty -w+ (AT g +y- v} .

Along a solution of the differential equation,

‘ da da 2
e "5?:'" - "W" 5 0

o
&
S!
o
N
n

.-AT g(x) + u -V

]
g
.
g
"

x+ Af(y) ~u.

=6=



Then $% = 0 if and only if

B (AT g7 w W
T A M = 0.
(A F(y)) I z = z
(3)
AT ' T .-
Now det(m) = det(I + A F(y) A~ G(x)) = det(I + A~ G(x) A F(y)). Itis
easy to show that H2 implies det M > 1 and H3 implies det M > 1.
Hence (3) holds if and only if w'=0 and z = 0, i.e., g% = 0 if and only
if x and y solve (*). Also det M > 1 implies that a(x, y) -+ o0 as
Juxi + ayn - oo, A theorem oi I‘..iapunov5 shows bthat.(*) has at least one

solution. We now prove uniqueness. Suppose (x,, Yl) and (xz, );2)

solve (*) for some fixed u and v. Then

(x) - %) + A (£y)) - £ly,) = 0
| (4)
-AT (g(x) - glx,) + (y; - y,) = 0.

‘Consider one-dimensional arcs x(6) and y(6), 0 < 6 <1 given by

*

le + (1 -0) x,

' x(0)

y(8) = 8y, + (1-0)y, .



‘I:\, RN | AU ' [

[ R 1 ) b A
dx ; dy _ 4 . e a
Then I ° % - Xy and a—% =¥~V Furthermore, (4) is equlyalent

to (5).

1
b -xp) + A [ FOO) - vz 40 = 0

(5)
T (! -
-A e_o(fr(x(e)) (x1 - x,) dé +. (]r1 -yy) = 0.

1 1
But S\ F(y(06)) do and 5‘ G(x(6)) d6 have the same properties as

- -
- -

F(y) and G(x) respectively so that (5) holds if and only if x =X, and

"Y1 = Yo
1 2 Q'E.D.

In the follbwing we assume that f and g satisfy the hypotheses

of Theorem 1.1.

Corollary 1l.1: The solution of (*) can be obtained as the limit of the

solution of an asymptotically stable differential equation.

Remark: If we suitably bound the norms of the matrices F(*) and
G(y), then the differential equation can be replaced by a difference equa-

6

tion. See Katzenelson and Seitelman.

Let w a g(x) and =z e f{y). The proof of the next two corol-

laries are straightforward and hence omitted.
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"Corollary 1.2: (a) -g—?;—- is positive semi-definite. It is positive definite

if G(x) is positive definite for all x. Dually g—é is positive semi-

definite. It is positive definite if F(y) is positive definite for all y.

. . ow 0z
(b) If G(x) and F(y) are symmetric matrices, then.ﬁ and v are

also symmetric.,

Corollary 1.3: (a) If wun + wvu —»00 then uxu + nyu -»oo.

(b) If £ and g also satisfy

<x, g(x)>>0 for J.c;EO
< x f{y) D >0 for y#0

then :

<u, w>>.0 for u#0’
and

<v,z>>0 for v#£0.

We now impose the conditions of Theorem l.1 on the n'etwo\i'k\
characteristics. |

Theorem 2.1: If each of the equations L, C, and R satisfies the

hypotheses of Theorem 1, then the network response is unique and is

defined by a differential equation in normal form.

Proof: Theorem 1.1 implies that the equations R, L, and C can be

solved giving,

l9-



VG = ;’G(e;o Jé)a iR = ;R(éﬁt JE) | | | (6)

iL = ;L(¢l JP)» VC = ;C(eS' q) ‘ (7) -

Furthermore since ei”i e eg - Fpc Vg and j"c‘.' & ig * FE‘G i, we

can obtain (using 7), Vg and iR in terms of q, ¢, er and jG. Sub-

stituting these functions in (D) we obtain the right hand side of D as

a function of 4, ¢, and the sources,
Q' E. D'

III. Stability

a) From now on we assume that all the sources are identically zero.
We also suppose that the network satisfies all the hypotheses of

Theorem 2.1 and in addition the following conditions

H4. The resistors are passive, i.e.,

<VR, ER(VR)> >0 if vp #0
<iG,'§‘rG(iG)> >0 if iz #0.

HS5, The inductors and capacitf;rs are passive, i.e.,

—_in_



<ip; $1;<ir)> >0 if in #0

<¢L' ?L(¢L)> >0 if éL;é 0

< vg Sgrg> > 0 i1 vg 0
and < qg Vglag) > > 0 if g ‘0.

Furthermore, it will be ‘assumed that the Jacobian matrices

associated with the inductors and capacitors, i.,e, the matrices
o0 oi 0q ov
I L S .
—, and are symmetric.
%)1I1 8¢L' Bvs )

By the Welll’-known theorem on exact differential forms7 we

obtain

Lemma 3.1. The hypothesis H5 implies that there'are real-valued

_functions Pp» P Pg and PG of the variables iI"’ ¢L' Vg and ve

such that,
sy oL, 9pg e
s T 0w C i wv, o 9% 2™ g T Vs
r L S ic

/

Furthermore each of the P; > 0 and pi(xi) = 0 if and only if x; = 0.

We will now make assumption

v
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Heé. The tree-branch capacitors and the link inductors are realistic,

i.e.,

.Pc(qC) + pL(¢L) -0 as

nqeh + "¢L" -»00 .

Remark: H5 is equivalent to saying that the inductors and capacitors
represent a conservative system. H6 is equivalent to saying that as the
“ charge in the tree capacitors or the flux in the link inductors become

unbounded, the energy stored also becomes unbounded.

b) A built-in Liapunov function: Let q and ¢ be fixed and consider,

A (4 ' ¢ ' |
p(a, ¢)=§0 ver 4D +§0<1L. abr> . (8)

We first remark that assumption H5 and Corollary 1, 2b imply that

ov 9i

C . . . . .
B9 and ETY are symmetric matrices so that fhg mteg'ra.l in (8) is
independent of the path of integration. Therefore p(q, ¢) is a well

defined number, . : N

Lemma 3.2. . (a) p(q, ¢) > 0 for all q, ¢ and p(q, ¢) if and only if

q=0and ¢ = 0.

(p) Furthermore p(q, ¢) >0 as uqu + P -+00.
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Proof: (a) By Corollary l.2a —qu- and ETY are positive semi-definite

matrices. This implies that p(q, $) > 0. By HS5 and Corollary 1.3b

p(q, ¢) = 0 if and only if q = 0 and ¢ = 0.

(b) By Corollary l.3a, uqu + u¢n —+o00 implies that qcH + WVgil > 00,

Now from (8) and the equations (L) and (C) we have
qc . dg - ¢L :
pla, ¢) = S'O K vy dgg D>+ 50 vg dag > + SO lipp dop >
. . ‘\\
N . | by
. : +S§ ips 405>

qs ’ qrv
P(a, ¢) = Pslag) + pp(ép) + So' vg dgf > + So dpe 40>
: (9)

Now,
ag | ¢ g
§0 g dag >+ 50 i d0p> = g 45> + i op >
- Ps(vs) - Pr(ir\) >0

by H5. Alsoby H6, polqg) + Pr(ép) =+ as uqgu +uépu -» 0. Hence

P(q, ¢) »00 as uqu + udu —»00.

Qo E- D.
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Suppose q(t) and ¢(t) is the solution of the normal form starting

in the initial condition q(0) and ¢(0). Let p{t) & P( qal{t), $(t)). Then,

-

dp _9p d ap d
Frm @t

-vgit) s g > - vglt) ig®>> by (D), R), (L), (C).

_<_ 0 for all't and

=0 and i, = 0.

0 if and only if VR G

&

The last two statements follow from H4. We therefore have

Theorem 3.1: (a) The zero-input of a network satisfying the conditions

of Theorem 2.1 and H4-H6 is bounded.
(b) The network is globally asymptotically stables if and only if
vR(t) 0 and iL(t) = 0 for all t.implies that q(t) = 0 and ¢(t) = 0 for

all t.

Proof: (a) Let q(0) and ¢(0) be the initial state and p(t) = p( Q(t),' o(t) ).

%{?‘ < 0 we have p(t) < p(0) for all t. Since p(q, ¢) »00

as uqn + ndn -»00 we ha.ve q(t) and ¢(t) bounded for all t.

Then since

(b) Consider the set of solutions of the normal form for which p is a

constant, i.e., g-?— =0 for all t, or equivalently vR(t) £ 0 and

nlda.



iG(t) = 0. By (D) and (R) this set is identical to the solutions of the

following pair of equations,

q=Frcip
(9)
¢ = -Frcve
and
Fro Vgl =0, Frgip#0. - (10) B

It is well known that all the trajectories of the network state q and ¢
converge to the traje.ctories which satisfy (9) and (10). Hence the net-
work is globally asymptotically stable if and only if (9) and (10) have the

. trivial solution q(t) = 0 and ¢(t) = 0.
' Q.E.D.

Definition 3.1: (a) The network is observable at the resistor terminals

if vG(t) = 0, iR(t) = 0 over a nonvanishing time interval implies that
q(t) = 0 and ¢(t) = 0 for all t.

(b) The network is weakly ohservable at the resistor terminals if

vg(t) 0 and ip(t) £ 0 for all t implies that q(t) = 0 and ¢(t) = 0.

Corollary 3. 2: | (a) The network is observable =3 the network is
) \

. weakly observable.

wlfia



(b) The network is globally asymptotically stable if and only if it is
weakly observable at the resistor terminals.

(c) For networks with linear inductors and linear capa-citors but non-
linear resistors the network is #symptotichl}y stable if and only if it is

observable at the resistor terminals.

Proof: (a) Follows from the definition; (b) is equivalent to Theorem

3.1b and .(c) is a well-known fact about time-invariant linear differen-

tial equations. -

‘ Q.E.D. .
Corollary 3.2(c) gives a useful stability criterion for networks

with linear inductors and capacitors. Suppose that the inductor and

capacitor characteristics gan be expres,sevd as i, = 'y L’ ¢1.. = Llr.,

qg = Cvs where I'y, L, S and C are positive definite symmetric

matrices. Then simple manipulations yield, ¢ =L iL and q =evc

_ -1 . T o _ -1 T
wherect _:l:].'“ + FLF LFLI‘:] and C =S (+ FSC C FSC]‘ .

1

Substituting in (9) and (10) yields j'

L - T 3
Céve = Froip
(11)
i, = - Freve
and
\
F.o.v. =0 FI_ i =0 ‘ 12
rRc¥c = % Frgln T % . (12)

]l &6n



~ . - r .
-1 _.T
0 & F;c Fre 0
Let A 2 ' ~and B =
-1 . .. T
| =L Frc 0 : 0 Fig
- - i hoo -

Then (11) and (12) are equivalent to

By the well-known conditionsa' for observability of a linear time-

invariant system we get

(13)

Corollary 3.3: If the inductors and capacitors are linear, then the net-

work is asymptotically stable if and oﬂly if the columns of the matrix

I:BT, Ba)7T, ..., _(BA“'I)T]

spans RnAwhere A and B are defined in (13) and A has dimension

n X n.
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T To avoid notational problems we assume that the network is time-
invariant.

tf  An nxn matrix M is positive semi-definite_if < x, Mx.> > 0
+ for all x. It is positive definite if < x, Mx> > 0 for all:
x # 0. '
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